Logo Search packages:      
Sourcecode: ardour version File versions  Download package

fft_graph.cc

/*
    Copyright (C) 2006 Paul Davis

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

*/

#include <iostream>

#include <glibmm.h>
#include <glibmm/refptr.h>

#include <gdkmm/gc.h>

#include <gtkmm/widget.h>
#include <gtkmm/style.h>
#include <gtkmm/treemodel.h>
#include <gtkmm/treepath.h>

#include <pbd/stl_delete.h>

#include <math.h>

#include "fft_graph.h"
#include "analysis_window.h"

using namespace std;
using namespace Gtk;
using namespace Gdk;

FFTGraph::FFTGraph(int windowSize)
{
      _logScale = 0;
      
      _in       = 0;
      _out      = 0;
      _hanning  = 0;
      _logScale = 0;

      _a_window = 0;

      _show_minmax     = false;
      _show_normalized = false;

      setWindowSize(windowSize);
}

void
FFTGraph::setWindowSize(int windowSize)
{
      if (_a_window) {
            Glib::Mutex::Lock lm  (_a_window->track_list_lock);
            setWindowSize_internal(windowSize);
      } else {
            setWindowSize_internal(windowSize);
      }
}

void
FFTGraph::setWindowSize_internal(int windowSize)
{
      // remove old tracklist & graphs
      if (_a_window) {
            _a_window->clear_tracklist();
      }
      
      _windowSize = windowSize;
      _dataSize = windowSize / 2;
      if (_in != 0) {
            fftwf_destroy_plan(_plan);
            free(_in);
            _in = 0;
      }
      
      if (_out != 0) {
            free(_out);
            _out = 0;
      }
      
      if (_hanning != 0) {
            free(_hanning);
            _hanning = 0;
      }

      if (_logScale != 0) {
            free(_logScale);
            _logScale = 0;
      }

      // When destroying, window size is set to zero to free up memory
      if (windowSize == 0)
            return;

      // FFT input & output buffers
      _in      = (float *) fftwf_malloc(sizeof(float) * _windowSize);
      _out     = (float *) fftwf_malloc(sizeof(float) * _windowSize);

      // Hanning window
      _hanning = (float *) malloc(sizeof(float) * _windowSize);


      // normalize the window
      double sum = 0.0;
      
      for (int i=0; i < _windowSize; i++) {
            _hanning[i]=0.81f * ( 0.5f - (0.5f * (float) cos(2.0f * M_PI * (float)i / (float)(_windowSize))));
            sum += _hanning[i];
      }

      double isum = 1.0 / sum;
      
      for (int i=0; i < _windowSize; i++) {
            _hanning[i] *= isum;
      }
      
      _logScale = (int *) malloc(sizeof(int) * _dataSize);
      //float count = 0;
      for (int i = 0; i < _dataSize; i++) {
            _logScale[i] = 0;
      }
      _plan = fftwf_plan_r2r_1d(_windowSize, _in, _out, FFTW_R2HC, FFTW_ESTIMATE);
}

FFTGraph::~FFTGraph()
{
      // This will free everything
      setWindowSize(0);
}

bool
FFTGraph::on_expose_event (GdkEventExpose* event)
{
      redraw();
      return true;
}

FFTResult *
FFTGraph::prepareResult(Gdk::Color color, string trackname)
{
      FFTResult *res = new FFTResult(this, color, trackname);

      return res;
}


void
FFTGraph::set_analysis_window(AnalysisWindow *a_window)
{
      _a_window = a_window;
}

void
FFTGraph::draw_scales(Glib::RefPtr<Gdk::Window> window)
{
      
      Glib::RefPtr<Gtk::Style> style = get_style();
      Glib::RefPtr<Gdk::GC> black = style->get_black_gc();
      Glib::RefPtr<Gdk::GC> white = style->get_white_gc();
      
      window->draw_rectangle(black, true, 0, 0, width, height);
      
      /**
       *  4          5
       *  _          _
       *   |        |
       * 1 |        | 2
       *   |________|
       *        3
       **/

      // Line 1
      window->draw_line(white, h_margin, v_margin, h_margin, height - v_margin );

      // Line 2
      window->draw_line(white, width - h_margin + 1, v_margin, width - h_margin + 1, height - v_margin );

      // Line 3
      window->draw_line(white, h_margin, height - v_margin, width - h_margin, height - v_margin );

#define DB_METRIC_LENGTH 8
      // Line 4
      window->draw_line(white, h_margin - DB_METRIC_LENGTH, v_margin, h_margin, v_margin );
      
      // Line 5
      window->draw_line(white, width - h_margin + 1, v_margin, width - h_margin + DB_METRIC_LENGTH, v_margin );



      if (graph_gc == 0) {
            graph_gc = GC::create( get_window() );
      }

      Color grey;

      grey.set_rgb_p(0.2, 0.2, 0.2);
      
      graph_gc->set_rgb_fg_color( grey );

      if (layout == 0) {
            layout = create_pango_layout ("");
            layout->set_font_description (get_style()->get_font());
      }

      // Draw logscale
      int logscale_pos = 0;
      int position_on_scale;


/* TODO, write better scales and change the log function so that octaves are of equal pixel length
      float scale_points[10] = { 55.0, 110.0, 220.0, 440.0, 880.0, 1760.0, 3520.0, 7040.0, 14080.0, 28160.0 };

      for (int x = 0; x < 10; x++) {
            
            // i = 0.. _dataSize-1
            float freq_at_bin = (SR/2.0) * ((double)i / (double)_dataSize);



                  freq_at_pixel = FFT_START * exp( FFT_RANGE * pixel / (double)(currentScaleWidth - 1) );
      }
      */

      for (int x = 1; x < 8; x++) {
            position_on_scale = (int)floor( (double)currentScaleWidth*(double)x/8.0);

            while (_logScale[logscale_pos] < position_on_scale)
                  logscale_pos++;
            
            int coord = (int)(v_margin + 1.0 + position_on_scale);
            
            int SR = 44100;

            int rate_at_pos = (int)((double)(SR/2) * (double)logscale_pos / (double)_dataSize);
            
            char buf[32];
            if (rate_at_pos < 1000)
                  snprintf(buf,32,"%dHz",rate_at_pos);
            else
                  snprintf(buf,32,"%dk",(int)floor( (float)rate_at_pos/(float)1000) );

            std::string label = buf;
            
            layout->set_text(label);
            
            window->draw_line(graph_gc, coord, v_margin, coord, height - v_margin - 1);

            int width, height;
            layout->get_pixel_size (width, height);
            
            window->draw_layout(white, coord - width / 2, v_margin / 2, layout);
            
      }

}

void
FFTGraph::redraw()
{     
      Glib::Mutex::Lock lm  (_a_window->track_list_lock);

      draw_scales(get_window());

      
      if (_a_window == 0)
            return;

      if (!_a_window->track_list_ready)
            return;

      cairo_t *cr;
      cr = gdk_cairo_create(GDK_DRAWABLE(get_window()->gobj()));
      cairo_set_line_width(cr, 1.5);
      cairo_translate(cr, (float)v_margin + 1.0, (float)h_margin);

      
      
      // Find "session wide" min & max
      float min =  1000000000000.0;
      float max = -1000000000000.0;
      
      TreeNodeChildren track_rows = _a_window->track_list.get_model()->children();
      
      for (TreeIter i = track_rows.begin(); i != track_rows.end(); i++) {
            
            TreeModel::Row row = *i;
            FFTResult *res = row[_a_window->tlcols.graph];

            // disregard fft analysis from empty signals
            if (res->minimum() == res->maximum()) {
                  continue;
            }
            
            if ( res->minimum() < min) {
                  min = res->minimum();
            }

            if ( res->maximum() > max) {
                  max = res->maximum();
            }
      }

      if (!_show_normalized) {
            min = -150.0f;
            max = 0.0f;
      }
      
      //int graph_height = height - 2 * h_margin;

      
      
      float fft_pane_size_w = (float)(width  - 2*v_margin) - 1.0;
      float fft_pane_size_h = (float)(height - 2*h_margin);

      double pixels_per_db = (double)fft_pane_size_h / (double)(max - min);

      cairo_rectangle(cr, 0.0, 0.0, fft_pane_size_w, fft_pane_size_h);
      cairo_clip(cr);

      for (TreeIter i = track_rows.begin(); i != track_rows.end(); i++) {
            
            TreeModel::Row row = *i;

            // don't show graphs for tracks which are deselected
            if (!row[_a_window->tlcols.visible]) {
                  continue;
            }
            
            FFTResult *res = row[_a_window->tlcols.graph];

            // don't show graphs for empty signals
            if (res->minimum() == res->maximum()) {
                  continue;
            }
      
            float mpp;
            
            if (_show_minmax) {
                  mpp = -1000000.0;

                  cairo_set_source_rgba(cr, res->get_color().get_red_p(), res->get_color().get_green_p(), res->get_color().get_blue_p(), 0.30);
                  cairo_move_to(cr, 0.5f + (float)_logScale[0], 0.5f + (float)( fft_pane_size_h - (int)floor( (res->maxAt(0) - min) * pixels_per_db) ));

                  // Draw the line of maximum values
                  for (int x = 1; x < res->length(); x++) {
                        if (res->maxAt(x) > mpp)
                              mpp = res->maxAt(x);
                        mpp = fmax(mpp, min);
                        mpp = fmin(mpp, max);

                        // If the next point on the log scale is at the same location,
                        // don't draw yet
                        if (x + 1 < res->length() && _logScale[x] == _logScale[x + 1]) {
                              continue;
                        }

                        float X = 0.5f + (float)_logScale[x];
                        float Y = 0.5f + (float)( fft_pane_size_h - (int)floor( (mpp - min) * pixels_per_db) );

                        cairo_line_to(cr, X, Y);

                        mpp = -1000000.0;
                  }

                  mpp = +10000000.0;
                  // Draw back to the start using the minimum value
                  for (int x = res->length()-1; x >= 0; x--) {
                        if (res->minAt(x) < mpp)
                              mpp = res->minAt(x);
                        mpp = fmax(mpp, min);
                        mpp = fmin(mpp, max);

                        // If the next point on the log scale is at the same location,
                        // don't draw yet
                        if (x - 1 > 0 && _logScale[x] == _logScale[x - 1]) {
                              continue;
                        }

                        float X = 0.5f + (float)_logScale[x];
                        float Y = 0.5f + (float)( fft_pane_size_h - (int)floor( (mpp - min) * pixels_per_db) );

                        cairo_line_to(cr, X, Y );

                        mpp = +10000000.0;
                  }

                  cairo_close_path(cr);

                  cairo_fill(cr);
            }



            // Set color from track
            cairo_set_source_rgb(cr, res->get_color().get_red_p(), res->get_color().get_green_p(), res->get_color().get_blue_p());

            mpp = -1000000.0;

            cairo_move_to(cr, 0.5, fft_pane_size_h-0.5);
      
            for (int x = 0; x < res->length(); x++) {
                  

                  if (res->avgAt(x) > mpp)
                        mpp = res->avgAt(x);
                  mpp = fmax(mpp, min);
                  mpp = fmin(mpp, max);
                  
                  // If the next point on the log scale is at the same location,
                  // don't draw yet
                  if (x + 1 < res->length() && _logScale[x] == _logScale[x + 1]) {
                        continue;
                  }

                  cairo_line_to(cr, 0.5f + (float)_logScale[x], 0.5f + (float)( fft_pane_size_h - (int)floor( (mpp - min) * pixels_per_db) ));

                  mpp = -1000000.0;
            }

            cairo_stroke(cr);
      }

      cairo_destroy(cr);
}

void
FFTGraph::on_size_request(Gtk::Requisition* requisition)
{
      width  = max(requisition->width,  minScaleWidth  + h_margin * 2);
      height = max(requisition->height, minScaleHeight + 2 + v_margin * 2);

      update_size();

      requisition->width  = width;;
      requisition->height = height;
}

void
FFTGraph::on_size_allocate(Gtk::Allocation & alloc)
{
      width = alloc.get_width();
      height = alloc.get_height();
      
      update_size();

      DrawingArea::on_size_allocate (alloc);
}

void
FFTGraph::update_size()
{
      currentScaleWidth  = width - h_margin*2;
      currentScaleHeight = height - 2 - v_margin*2; 

      float SR = 44100;
      float FFT_START = SR/(double)_dataSize;
      float FFT_END = SR/2.0;
      float FFT_RANGE = log( FFT_END / FFT_START);
      float pixel = 0;
      for (int i = 0; i < _dataSize; i++) {
            float freq_at_bin = (SR/2.0) * ((double)i / (double)_dataSize);
            float freq_at_pixel;
            pixel--;
            do {
                  pixel++;
                  freq_at_pixel = FFT_START * exp( FFT_RANGE * pixel / (double)(currentScaleWidth - 1) );
            } while (freq_at_bin > freq_at_pixel);

            _logScale[i] = (int)floor(pixel);
      }
}


Generated by  Doxygen 1.6.0   Back to index